The Euler – Lagrange Equations for Nonholonomic Systems
نویسندگان
چکیده
This paper applies the recently developed theory of discrete nonholonomic mechanics to the study of discrete nonholonomic left-invariant dynamics on Lie groups. The theory is illustrated with the discrete versions of two classical nonholonomic systems, the Suslov top and the Chaplygin sleigh. The preservation of the reduced energy by the discrete flow is observed and the discrete momentum conservation is discussed.
منابع مشابه
Discrete Nonholonomic LL Systems on Lie Groups
This papers studies discrete nonholonomic mechanical systems whose configuration space is a Lie group G Assuming that the discrete Lagrangian and constraints are left-invariant, the discrete Euler–Lagrange equations are reduced to the discrete Euler–Poincaré–Suslov equations. The dynamics associated with the discrete Euler–Poincaré–Suslov equations is shown to evolve on a subvariety of the Lie ...
متن کاملNonholonomic systems as restricted Euler-Lagrange systems
We recall the notion of a nonholonomic system by means of an example of classical mechanics, namely the vertical rolling disk. For a general mechanical system with nonholonomic constraints, we present a Lagrangian formulation of the nonholonomic and vakonomic dynamics using the method of anholonomic frames. We use this approach to deal with the issue of when a nonholonomic system can be interpr...
متن کاملEuler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کاملDiscrete Nonholonomic Lagrangian Systems on Lie Groupoids
This paper studies the construction of geometric integrators for nonholonomic systems. We derive the nonholonomic discrete Euler-Lagrange equations in a setting which permits to deduce geometric integrators for continuous nonholonomic systems (reduced or not). The formalism is given in terms of Lie groupoids, specifying a discrete Lagrangian and a constraint submanifold on it. Additionally, it ...
متن کاملPassivity-Based Distributed Control of Networked Euler-Lagrange Systems With Nonholonomic Constraints
In this report, we study the distributed control problem of networked Euler-Lagrange(EL) systems with nonholonomic constraints. The reason for singling out this particular topic is that distributed control of networked Euler-Lagrange systems with nonholonomic constraints captures a large class of contemporary engineering problems, such as rendezvous problem and formation problem. We propose a n...
متن کامل